Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Prospects for Electric and Hybrid Electric Vehicles: Second-Stage Results of a Two-Stage Delphi Study

1996-08-01
961698
A two-stage Delphi study was conducted to collect information that would enable a technical and economic assessment of electric (EV) and hybrid electric (HEV) vehicles. The first-stage worldwide survey was completed in fall 1994 while the second-stage was completed by summer 1995. The paper reports results from the second round of the survey and the major differences between the two rounds. This second-stage international survey obtained information from 93 expert respondents from the automotive technology field. The second stage response provided the following key results. EVs will penetrate the market first followed by internal combustion engine powered HEVs while gas turbine and fuel cell powered HEVs will not have any significant penetration until after 2020. By 2020 EVs and internal combustion engine powered HEVs are projected to have approximately a 15% share of the new vehicle market.
Technical Paper

Cylinder Pressure Analysis of a Diesel Engine Using Oxygen-Enriched Air and Emulsified Fuels

1990-09-01
901565
Analytical studies of oxygen-enriched diesel engine combustion have indicated the various benefits as well as the need for using cheaper fuels with water addition. To verify analytical results, a series of single-cylinder diesel engine tests were conducted to investigate the concepts of oxygen enriched air (OEA) for combustion with water emulsified fuels. Cylinder pressure traces were obtained for inlet oxygen levels of 21% to 35% and fuel emulsions with water contents of 0% to 20%. Data for emulsified fuels included no. 2 and no. 4 diesel fuels. The excess oxygen for the tests was supplied from compressed bottled oxygen connected to the intake manifold. The cylinder pressure data was collected with an AVL pressure transducer and a personal computer-based data logging system. The crank angle was measured with an optical encoder. In each data run, 30 consecutive cycles were recorded and later averaged for analysis.
Technical Paper

Safety Considerations for Sodium-Sulfur Batteries for Electric Vehicles

1989-08-01
891693
Safety issues and current transport (shipment and b-vehicle use) and environmental regulations applicable to sodium-sulfur batteries for electric vehicles are summarized, and an assessment technique is suggested for evaluating potential hazards relative to commonly accepted risks. It is found that shipment regulations do not directly apply to sodium-sulfur batteries. Disposal hazards need to be quantified and decommissioning procedures need to be developed to comply with the environmental regulations. The risk assessment could be used to help commercialize sodium-sulfur and other advanced batteries in electric vehicles.
Technical Paper

Analysis of Life Cycle Costs for Electric Vans with Advanced Battery Systems

1989-02-01
890819
The performance of advanced Zn/Br2, LiAl/FeS, Na/S, Ni/Fe, and Fe/Air batteries in electric vans was compared to that of tubular lead-acid technology. The MARVEL computer analysis system evaluated these batteries for the G-Van and IDSEP vehicles over two driving schedules. Each of the advanced batteries exhibited the potential for major improvements in both range and life cycle cost compared with tubular lead-acid. A sensitivity analysis revealed specific energy, battery initial cost, and cycle life to be the dominant factors in reducing life cycle cost for the case of vans powered by tubular lead-acid batteries.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
X